Modern Discontent

Share this post
Fluvoxamine Anthology Series Citations
moderndiscontent.substack.com

Fluvoxamine Anthology Series Citations

Because these Citations were too long

Modern Discontent
Feb 25
Comment1
Share

Share

Citations

  1. Chu, A. & Wadhwa, R. Selective serotonin reuptake inhibitors. StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK554406/.

  2. Marčec, R., & Likić, R. (2021). Could fluvoxamine keep COVID-19 patients out of hospitals and intensive care units?. Croatian medical journal, 62(1), 95–100. https://doi.org/10.3325/cmj.2021.62.95

  3. Lenze, E. J., Mattar, C., Zorumski, C. F., Stevens, A., Schweiger, J., Nicol, G. E., Miller, J. P., Yang, L., Yingling, M., Avidan, M. S., & Reiersen, A. M. (2020). Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA, 324(22), 2292–2300. https://doi.org/10.1001/jama.2020.22760

  4. Rosen, D. A., Seki, S. M., Fernández-Castañeda, A., Beiter, R. M., Eccles, J. D., Woodfolk, J. A., & Gaultier, A. (2019). Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Science translational medicine, 11(478), eaau5266. https://doi.org/10.1126/scitranslmed.aau5266

  5. Seftel, D., & Boulware, D. R. (2021). Prospective Cohort of Fluvoxamine for Early Treatment of Coronavirus Disease 19. Open forum infectious diseases, 8(2), ofab050. https://doi.org/10.1093/ofid/ofab050

  6. Fluvoxamine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK548905/.

  7. Sukhatme, V. P., Reiersen, A. M., Vayttaden, S. J., & Sukhatme, V. V. (2021). Fluvoxamine: A Review of Its Mechanism of Action and Its Role in COVID-19. Frontiers in pharmacology, 12, 652688. https://doi.org/10.3389/fphar.2021.652688

  8. Sansone, R. A., & Sansone, L. A. (2014). Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison. Innovations in clinical neuroscience, 11(3-4), 37–42.

  9. Hashimoto, Y., Suzuki, T., & Hashimoto, K. (2022). Mechanisms of action of fluvoxamine for COVID-19: a historical review. Molecular psychiatry, 1–10. Advance online publication. https://doi.org/10.1038/s41380-021-01432-3

  10. Maurice, T., & Su, T. P. (2009). The pharmacology of sigma-1 receptors. Pharmacology & therapeutics, 124(2), 195–206. https://doi.org/10.1016/j.pharmthera.2009.07.001

  11. Alberts, B. The endoplasmic reticulum. Molecular Biology of the Cell. 4th edition. Available at: https://www.ncbi.nlm.nih.gov/books/NBK26841/.

  12. Read, A., & Schröder, M. (2021). The Unfolded Protein Response: An Overview. Biology, 10(5), 384. https://doi.org/10.3390/biology10050384

  13. Xue, M., & Feng, L. (2021). The Role of Unfolded Protein Response in Coronavirus Infection and Its Implications for Drug Design. Frontiers in microbiology, 12, 808593. https://doi.org/10.3389/fmicb.2021.808593

  14. Shi, M., Chen, F., Chen, Z., Yang, W., Yue, S., Zhang, J., & Chen, X. (2021). Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Frontiers in cellular neuroscience, 15, 685201. https://doi.org/10.3389/fncel.2021.685201

  15. Krystel-Whittemore, M., Dileepan, K. N., & Wood, J. G. (2016). Mast Cell: A Multi-Functional Master Cell. Frontiers in immunology, 6, 620. https://doi.org/10.3389/fimmu.2015.00620

  16. Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., Guo, L., Yang, J., Wang, C., Jiang, S., Yang, D., Zhang, G., Li, H., Chen, F., Xu, Y., Chen, M., Gao, Z., Yang, J., Dong, J., Liu, B., … Wang, J. (2020). Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell host & microbe, 27(6), 883–890.e2. https://doi.org/10.1016/j.chom.2020.04.017

  17. Chen, Z. H., Xiao, L., Chen, J. H., Luo, H. S., Wang, G. H., Huang, Y. L., & Wang, X. P. (2008). Effects of fluoxetine on mast cell morphology and protease-1 expression in gastric antrum in a rat model of depression. World journal of gastroenterology, 14(45), 6993–6998. https://doi.org/10.3748/wjg.14.6993

  18. Dai, H., & Korthuis, R. J. (2011). Mast Cell Proteases and Inflammation. Drug discovery today. Disease models, 8(1), 47–55. https://doi.org/10.1016/j.ddmod.2011.06.004

  19. Blaess, M., Kaiser, L., Sommerfeld, O., Csuk, R., & Deigner, H. P. (2021). Drugs, Metabolites, and Lung Accumulating Small Lysosomotropic Molecules: Multiple Targeting Impedes SARS-CoV-2 Infection and Progress to COVID-19. International journal of molecular sciences, 22(4), 1797. https://doi.org/10.3390/ijms22041797

  20. Glebov O. O. (2021). Low-Dose Fluvoxamine Modulates Endocytic Trafficking of SARS-CoV-2 Spike Protein: A Potential Mechanism for Anti-COVID-19 Protection by Antidepressants. Frontiers in pharmacology, 12, 787261. https://doi.org/10.3389/fphar.2021.787261

  21. Breiden, B., & Sandhoff, K. (2021). Acid Sphingomyelinase, a Lysosomal and Secretory Phospholipase C, Is Key for Cellular Phospholipid Catabolism. International journal of molecular sciences, 22(16), 9001. https://doi.org/10.3390/ijms22169001

  22. Kornhuber, J., Hoertel, N., & Gulbins, E. (2021). The acid sphingomyelinase/ceramide system in COVID-19. Molecular psychiatry, 1–8. Advance online publication. https://doi.org/10.1038/s41380-021-01309-5

  23. Carpinteiro, A., Edwards, M. J., Hoffmann, M., Kochs, G., Gripp, B., Weigang, S., Adams, C., Carpinteiro, E., Gulbins, A., Keitsch, S., Sehl, C., Soddemann, M., Wilker, B., Kamler, M., Bertsch, T., Lang, K. S., Patel, S., Wilson, G. C., Walter, S., Hengel, H., … Gulbins, E. (2020). Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell reports. Medicine, 1(8), 100142. https://doi.org/10.1016/j.xcrm.2020.100142

  24. Shu, H., Peng, Y., Hang, W., Li, N., Zhou, N., & Wang, D. W. (2022). Emerging Roles of Ceramide in Cardiovascular Diseases. Aging and disease, 13(1), 232–245. https://doi.org/10.14336/AD.2021.0710

  25. Abdullah, C. S., Alam, S., Aishwarya, R., Miriyala, S., Panchatcharam, M., Bhuiyan, M., Peretik, J. M., Orr, A. W., James, J., Osinska, H., Robbins, J., Lorenz, J. N., & Bhuiyan, M. S. (2018). Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics. Journal of the American Heart Association, 7(20), e009775. https://doi.org/10.1161/JAHA.118.009775

  26. Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., Healy, S., … Samali, A. (2019). Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. The FEBS journal, 286(2), 241–278. https://doi.org/10.1111/febs.14608

  27. Köseler, A., Sabirli, R., Gören, T., Türkçüer, I., & Kurt, Ö. (2020). Endoplasmic Reticulum Stress Markers in SARS-COV-2 Infection and Pneumonia: Case-Control Study. In vivo (Athens, Greece), 34(3 Suppl), 1645–1650. https://doi.org/10.21873/invivo.11956

  28. Hong, J., Kim, K., Kim, J. H., & Park, Y. (2017). The Role of Endoplasmic Reticulum Stress in Cardiovascular Disease and Exercise. International journal of vascular medicine, 2017, 2049217. https://doi.org/10.1155/2017/2049217

  29. Hosoi, T., Miyahara, T., Kayano, T., Yokoyama, S., & Ozawa, K. (2012). Fluvoxamine attenuated endoplasmic reticulum stress-induced leptin resistance. Frontiers in endocrinology, 3, 12. https://doi.org/10.3389/fendo.2012.00012

  30. Lin, J. H., Walter, P., & Yen, T. S. (2008). Endoplasmic reticulum stress in disease pathogenesis. Annual review of pathology, 3, 399–425. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151434

  31. Omi, T., Tanimukai, H., Kanayama, D., Sakagami, Y., Tagami, S., Okochi, M., Morihara, T., Sato, M., Yanagida, K., Kitasyoji, A., Hara, H., Imaizumi, K., Maurice, T., Chevallier, N., Marchal, S., Takeda, M., & Kudo, T. (2014). Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor. Cell death & disease, 5(7), e1332. https://doi.org/10.1038/cddis.2014.301

  32. DeSai, C. & Shapshak, A. Cerebral ischemia. StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK560510/.

  33. Koçak Tufan, Z., Kayaaslan, B., & Mer, M. (2021). COVID-19 and Sepsis. Turkish journal of medical sciences, 51(SI-1), 3301–3311. https://doi.org/10.3906/sag-2108-239

  34. Echavarría-Consuegra, L., Cook, G. M., Busnadiego, I., Lefèvre, C., Keep, S., Brown, K., Doyle, N., Dowgier, G., Franaszek, K., Moore, N. A., Siddell, S. G., Bickerton, E., Hale, B. G., Firth, A. E., Brierley, I., & Irigoyen, N. (2021). Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection. PLoS pathogens, 17(6), e1009644. https://doi.org/10.1371/journal.ppat.1009644

  35. Chan, C. P., Siu, K. L., Chin, K. T., Yuen, K. Y., Zheng, B., & Jin, D. Y. (2006). Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. Journal of virology, 80(18), 9279–9287. https://doi.org/10.1128/JVI.00659-06

  36. Rhea, E. M., Logsdon, A. F., Hansen, K. M., Williams, L. M., Reed, M. J., Baumann, K. K., Holden, S. J., Raber, J., Banks, W. A., & Erickson, M. A. (2021). The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nature neuroscience, 24(3), 368–378. https://doi.org/10.1038/s41593-020-00771-8

  37. Hsu, A. C.-Y. et al. SARS-COV-2 spike protein promotes hyper-inflammatory response that can be ameliorated by spike-antagonistic peptide and FDA-approved ER stress and MAP kinase inhibitors in vitro. bioRxiv Available at: https://www.biorxiv.org/content/10.1101/2020.09.30.317818v1.full.

  38. Zimniak, M., Kirschner, L., Hilpert, H. et al. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci Rep 11, 5890 (2021). https://doi.org/10.1038/s41598-021-85049-0

  39. Hillhouse, T. M., & Porter, J. H. (2015). A brief history of the development of antidepressant drugs: from monoamines to glutamate. Experimental and clinical psychopharmacology, 23(1), 1–21. https://doi.org/10.1037/a0038550

  40. Fred, S. M., Kuivanen, S., Ugurlu, H., Casarotto, P. C., Levanov, L., Saksela, K., Vapalahti, O., & Castrén, E. (2022). Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Frontiers in pharmacology, 12, 755600. https://doi.org/10.3389/fphar.2021.755600

  41. Reis G, Dos Santos Moreira-Silva EA, Silva DCM, et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet Glob Health. 2022;10(1):e42-e51. doi:10.1016/S2214-109X(21)00448-4

  42. Calusic, M., Marcec, R., Luksa, L., Jurkovic, I., Kovac, N., Mihaljevic, S., & Likic, R. (2021). Safety and efficacy of fluvoxamine in COVID-19 ICU patients: An open label, prospective cohort trial with matched controls. British journal of clinical pharmacology, 10.1111/bcp.15126. Advance online publication. https://doi.org/10.1111/bcp.15126

  43. Hoertel, N., Sánchez-Rico, M., Vernet, R. et al. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol Psychiatry 26, 5199–5212 (2021). https://doi.org/10.1038/s41380-021-01021-4

  44. Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, et al. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial [published online ahead of print, 2021 Nov 23]. Lancet Infect Dis. 2021;22(3):329-340. doi:10.1016/S1473-3099(21)00677-0

  45. Röltgen, K., Nielsen, S., Silva, O., Younes, S. F., Zaslavsky, M., Costales, C., Yang, F., Wirz, O. F., Solis, D., Hoh, R. A., Wang, A., Arunachalam, P. S., Colburg, D., Zhao, S., Haraguchi, E., Lee, A. S., Shah, M. M., Manohar, M., Chang, I., Gao, F., … Boyd, S. D. (2022). Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell, S0092-8674(22)00076-9. Advance online publication. https://doi.org/10.1016/j.cell.2022.01.018

  46. He, B. Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13, 393–403 (2006). https://doi.org/10.1038/sj.cdd.4401833

  47. Fung, T. S., & Liu, D. X. (2014). Coronavirus infection, ER stress, apoptosis and innate immunity. Frontiers in microbiology, 5, 296. https://doi.org/10.3389/fmicb.2014.00296

  48. Li, S., Kong, L., & Yu, X. (2015). The expanding roles of endoplasmic reticulum stress in virus replication and pathogenesis. Critical reviews in microbiology, 41(2), 150–164. https://doi.org/10.3109/1040841X.2013.813899

  49. Hong, J., Kim, K., Kim, J. H., & Park, Y. (2017). The Role of Endoplasmic Reticulum Stress in Cardiovascular Disease and Exercise. International journal of vascular medicine, 2017, 2049217. https://doi.org/10.1155/2017/2049217

  50. Zha, X., Yue, Y., Dong, N. & Xiong, S. Endoplasmic Reticulum Stress Aggravates Viral Myocarditis by Raising Inflammation Through the IRE1-Associated NF-κB Pathway. Canadian Journal of Cardiology Available at: https://www.onlinecjc.ca/article/S0828-282X(15)00178-6/fulltext.

  51. Zhang, H., Yue, Y., Sun, T., Wu, X., & Xiong, S. (2017). Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Scientific reports, 7, 42162. https://doi.org/10.1038/srep42162

  52. Luo, T., Kim, J. K., Chen, B., Abdel-Latif, A., Kitakaze, M., & Yan, L. (2015). Attenuation of ER stress prevents post-infarction-induced cardiac rupture and remodeling by modulating both cardiac apoptosis and fibrosis. Chemico-biological interactions, 225, 90–98. https://doi.org/10.1016/j.cbi.2014.10.032

  53. Oster ME, Shay DK, Su JR, et al. Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA. 2022;327(4):331–340. doi:10.1001/jama.2021.24110

  54. Rao, R. V., & Bredesen, D. E. (2004). Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Current opinion in cell biology, 16(6), 653–662. https://doi.org/10.1016/j.ceb.2004.09.012

  55. Prasanth, M. I., Malar, D. S., Tencomnao, T. & Brimson, J. M. The emerging role of the sigma-1 receptor in autophagy: Hand-in-hand targets for the treatment of alzheimer's. Taylor & Francis Available at: https://www.tandfonline.com/doi/full/10.1080/14728222.2021.1939681?scroll=top&needAccess=true.

  56. Jin, J. L., Fang, M., Zhao, Y. X., & Liu, X. Y. (2015). Roles of sigma-1 receptors in Alzheimer's disease. International journal of clinical and experimental medicine, 8(4), 4808–4820.

  57. Song, W. J., Hui, C., Hull, J. H., Birring, S. S., McGarvey, L., Mazzone, S. B., & Chung, K. F. (2021). Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. The Lancet. Respiratory medicine, 9(5), 533–544. https://doi.org/10.1016/S2213-2600(21)00125-9

  58. Wu, P. E., Austin, E. & Leong, D. Fluvoxamine for symptomatic outpatients with covid-19. CMAJ Available at: https://www.cmaj.ca/content/194/7/E258.

Comment1
ShareShare

Create your profile

0 subscriptions will be displayed on your profile (edit)

Skip for now

Only paid subscribers can comment on this post

Already a paid subscriber? Sign in

Check your email

For your security, we need to re-authenticate you.

Click the link we sent to , or click here to sign in.

Nova123
Feb 25Liked by Modern Discontent

Nice! 👍🏼

Expand full comment
ReplyGive gift
TopNewCommunity

No posts

Ready for more?

© 2022 Modern Discontent
Privacy ∙ Terms ∙ Collection notice
Publish on Substack Get the app
Substack is the home for great writing