Citations
Chu, A. & Wadhwa, R. Selective serotonin reuptake inhibitors. StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK554406/.
Marčec, R., & Likić, R. (2021). Could fluvoxamine keep COVID-19 patients out of hospitals and intensive care units?. Croatian medical journal, 62(1), 95–100. https://doi.org/10.3325/cmj.2021.62.95
Lenze, E. J., Mattar, C., Zorumski, C. F., Stevens, A., Schweiger, J., Nicol, G. E., Miller, J. P., Yang, L., Yingling, M., Avidan, M. S., & Reiersen, A. M. (2020). Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA, 324(22), 2292–2300. https://doi.org/10.1001/jama.2020.22760
Rosen, D. A., Seki, S. M., Fernández-Castañeda, A., Beiter, R. M., Eccles, J. D., Woodfolk, J. A., & Gaultier, A. (2019). Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Science translational medicine, 11(478), eaau5266. https://doi.org/10.1126/scitranslmed.aau5266
Seftel, D., & Boulware, D. R. (2021). Prospective Cohort of Fluvoxamine for Early Treatment of Coronavirus Disease 19. Open forum infectious diseases, 8(2), ofab050. https://doi.org/10.1093/ofid/ofab050
Fluvoxamine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK548905/.
Sukhatme, V. P., Reiersen, A. M., Vayttaden, S. J., & Sukhatme, V. V. (2021). Fluvoxamine: A Review of Its Mechanism of Action and Its Role in COVID-19. Frontiers in pharmacology, 12, 652688. https://doi.org/10.3389/fphar.2021.652688
Sansone, R. A., & Sansone, L. A. (2014). Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison. Innovations in clinical neuroscience, 11(3-4), 37–42.
Hashimoto, Y., Suzuki, T., & Hashimoto, K. (2022). Mechanisms of action of fluvoxamine for COVID-19: a historical review. Molecular psychiatry, 1–10. Advance online publication. https://doi.org/10.1038/s41380-021-01432-3
Maurice, T., & Su, T. P. (2009). The pharmacology of sigma-1 receptors. Pharmacology & therapeutics, 124(2), 195–206. https://doi.org/10.1016/j.pharmthera.2009.07.001
Alberts, B. The endoplasmic reticulum. Molecular Biology of the Cell. 4th edition. Available at: https://www.ncbi.nlm.nih.gov/books/NBK26841/.
Read, A., & Schröder, M. (2021). The Unfolded Protein Response: An Overview. Biology, 10(5), 384. https://doi.org/10.3390/biology10050384
Xue, M., & Feng, L. (2021). The Role of Unfolded Protein Response in Coronavirus Infection and Its Implications for Drug Design. Frontiers in microbiology, 12, 808593. https://doi.org/10.3389/fmicb.2021.808593
Shi, M., Chen, F., Chen, Z., Yang, W., Yue, S., Zhang, J., & Chen, X. (2021). Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Frontiers in cellular neuroscience, 15, 685201. https://doi.org/10.3389/fncel.2021.685201
Krystel-Whittemore, M., Dileepan, K. N., & Wood, J. G. (2016). Mast Cell: A Multi-Functional Master Cell. Frontiers in immunology, 6, 620. https://doi.org/10.3389/fimmu.2015.00620
Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., Guo, L., Yang, J., Wang, C., Jiang, S., Yang, D., Zhang, G., Li, H., Chen, F., Xu, Y., Chen, M., Gao, Z., Yang, J., Dong, J., Liu, B., … Wang, J. (2020). Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell host & microbe, 27(6), 883–890.e2. https://doi.org/10.1016/j.chom.2020.04.017
Chen, Z. H., Xiao, L., Chen, J. H., Luo, H. S., Wang, G. H., Huang, Y. L., & Wang, X. P. (2008). Effects of fluoxetine on mast cell morphology and protease-1 expression in gastric antrum in a rat model of depression. World journal of gastroenterology, 14(45), 6993–6998. https://doi.org/10.3748/wjg.14.6993
Dai, H., & Korthuis, R. J. (2011). Mast Cell Proteases and Inflammation. Drug discovery today. Disease models, 8(1), 47–55. https://doi.org/10.1016/j.ddmod.2011.06.004
Blaess, M., Kaiser, L., Sommerfeld, O., Csuk, R., & Deigner, H. P. (2021). Drugs, Metabolites, and Lung Accumulating Small Lysosomotropic Molecules: Multiple Targeting Impedes SARS-CoV-2 Infection and Progress to COVID-19. International journal of molecular sciences, 22(4), 1797. https://doi.org/10.3390/ijms22041797
Glebov O. O. (2021). Low-Dose Fluvoxamine Modulates Endocytic Trafficking of SARS-CoV-2 Spike Protein: A Potential Mechanism for Anti-COVID-19 Protection by Antidepressants. Frontiers in pharmacology, 12, 787261. https://doi.org/10.3389/fphar.2021.787261
Breiden, B., & Sandhoff, K. (2021). Acid Sphingomyelinase, a Lysosomal and Secretory Phospholipase C, Is Key for Cellular Phospholipid Catabolism. International journal of molecular sciences, 22(16), 9001. https://doi.org/10.3390/ijms22169001
Kornhuber, J., Hoertel, N., & Gulbins, E. (2021). The acid sphingomyelinase/ceramide system in COVID-19. Molecular psychiatry, 1–8. Advance online publication. https://doi.org/10.1038/s41380-021-01309-5
Carpinteiro, A., Edwards, M. J., Hoffmann, M., Kochs, G., Gripp, B., Weigang, S., Adams, C., Carpinteiro, E., Gulbins, A., Keitsch, S., Sehl, C., Soddemann, M., Wilker, B., Kamler, M., Bertsch, T., Lang, K. S., Patel, S., Wilson, G. C., Walter, S., Hengel, H., … Gulbins, E. (2020). Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell reports. Medicine, 1(8), 100142. https://doi.org/10.1016/j.xcrm.2020.100142
Shu, H., Peng, Y., Hang, W., Li, N., Zhou, N., & Wang, D. W. (2022). Emerging Roles of Ceramide in Cardiovascular Diseases. Aging and disease, 13(1), 232–245. https://doi.org/10.14336/AD.2021.0710
Abdullah, C. S., Alam, S., Aishwarya, R., Miriyala, S., Panchatcharam, M., Bhuiyan, M., Peretik, J. M., Orr, A. W., James, J., Osinska, H., Robbins, J., Lorenz, J. N., & Bhuiyan, M. S. (2018). Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics. Journal of the American Heart Association, 7(20), e009775. https://doi.org/10.1161/JAHA.118.009775
Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., Healy, S., … Samali, A. (2019). Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. The FEBS journal, 286(2), 241–278. https://doi.org/10.1111/febs.14608
Köseler, A., Sabirli, R., Gören, T., Türkçüer, I., & Kurt, Ö. (2020). Endoplasmic Reticulum Stress Markers in SARS-COV-2 Infection and Pneumonia: Case-Control Study. In vivo (Athens, Greece), 34(3 Suppl), 1645–1650. https://doi.org/10.21873/invivo.11956
Hong, J., Kim, K., Kim, J. H., & Park, Y. (2017). The Role of Endoplasmic Reticulum Stress in Cardiovascular Disease and Exercise. International journal of vascular medicine, 2017, 2049217. https://doi.org/10.1155/2017/2049217
Hosoi, T., Miyahara, T., Kayano, T., Yokoyama, S., & Ozawa, K. (2012). Fluvoxamine attenuated endoplasmic reticulum stress-induced leptin resistance. Frontiers in endocrinology, 3, 12. https://doi.org/10.3389/fendo.2012.00012
Lin, J. H., Walter, P., & Yen, T. S. (2008). Endoplasmic reticulum stress in disease pathogenesis. Annual review of pathology, 3, 399–425. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151434
Omi, T., Tanimukai, H., Kanayama, D., Sakagami, Y., Tagami, S., Okochi, M., Morihara, T., Sato, M., Yanagida, K., Kitasyoji, A., Hara, H., Imaizumi, K., Maurice, T., Chevallier, N., Marchal, S., Takeda, M., & Kudo, T. (2014). Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor. Cell death & disease, 5(7), e1332. https://doi.org/10.1038/cddis.2014.301
DeSai, C. & Shapshak, A. Cerebral ischemia. StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK560510/.
Koçak Tufan, Z., Kayaaslan, B., & Mer, M. (2021). COVID-19 and Sepsis. Turkish journal of medical sciences, 51(SI-1), 3301–3311. https://doi.org/10.3906/sag-2108-239
Echavarría-Consuegra, L., Cook, G. M., Busnadiego, I., Lefèvre, C., Keep, S., Brown, K., Doyle, N., Dowgier, G., Franaszek, K., Moore, N. A., Siddell, S. G., Bickerton, E., Hale, B. G., Firth, A. E., Brierley, I., & Irigoyen, N. (2021). Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection. PLoS pathogens, 17(6), e1009644. https://doi.org/10.1371/journal.ppat.1009644
Chan, C. P., Siu, K. L., Chin, K. T., Yuen, K. Y., Zheng, B., & Jin, D. Y. (2006). Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. Journal of virology, 80(18), 9279–9287. https://doi.org/10.1128/JVI.00659-06
Rhea, E. M., Logsdon, A. F., Hansen, K. M., Williams, L. M., Reed, M. J., Baumann, K. K., Holden, S. J., Raber, J., Banks, W. A., & Erickson, M. A. (2021). The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nature neuroscience, 24(3), 368–378. https://doi.org/10.1038/s41593-020-00771-8
Hsu, A. C.-Y. et al. SARS-COV-2 spike protein promotes hyper-inflammatory response that can be ameliorated by spike-antagonistic peptide and FDA-approved ER stress and MAP kinase inhibitors in vitro. bioRxiv Available at: https://www.biorxiv.org/content/10.1101/2020.09.30.317818v1.full.
Zimniak, M., Kirschner, L., Hilpert, H. et al. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci Rep 11, 5890 (2021). https://doi.org/10.1038/s41598-021-85049-0
Hillhouse, T. M., & Porter, J. H. (2015). A brief history of the development of antidepressant drugs: from monoamines to glutamate. Experimental and clinical psychopharmacology, 23(1), 1–21. https://doi.org/10.1037/a0038550
Fred, S. M., Kuivanen, S., Ugurlu, H., Casarotto, P. C., Levanov, L., Saksela, K., Vapalahti, O., & Castrén, E. (2022). Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Frontiers in pharmacology, 12, 755600. https://doi.org/10.3389/fphar.2021.755600
Reis G, Dos Santos Moreira-Silva EA, Silva DCM, et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet Glob Health. 2022;10(1):e42-e51. doi:10.1016/S2214-109X(21)00448-4
Calusic, M., Marcec, R., Luksa, L., Jurkovic, I., Kovac, N., Mihaljevic, S., & Likic, R. (2021). Safety and efficacy of fluvoxamine in COVID-19 ICU patients: An open label, prospective cohort trial with matched controls. British journal of clinical pharmacology, 10.1111/bcp.15126. Advance online publication. https://doi.org/10.1111/bcp.15126
Hoertel, N., Sánchez-Rico, M., Vernet, R. et al. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol Psychiatry 26, 5199–5212 (2021). https://doi.org/10.1038/s41380-021-01021-4
Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, et al. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial [published online ahead of print, 2021 Nov 23]. Lancet Infect Dis. 2021;22(3):329-340. doi:10.1016/S1473-3099(21)00677-0
Röltgen, K., Nielsen, S., Silva, O., Younes, S. F., Zaslavsky, M., Costales, C., Yang, F., Wirz, O. F., Solis, D., Hoh, R. A., Wang, A., Arunachalam, P. S., Colburg, D., Zhao, S., Haraguchi, E., Lee, A. S., Shah, M. M., Manohar, M., Chang, I., Gao, F., … Boyd, S. D. (2022). Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell, S0092-8674(22)00076-9. Advance online publication. https://doi.org/10.1016/j.cell.2022.01.018
He, B. Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13, 393–403 (2006). https://doi.org/10.1038/sj.cdd.4401833
Fung, T. S., & Liu, D. X. (2014). Coronavirus infection, ER stress, apoptosis and innate immunity. Frontiers in microbiology, 5, 296. https://doi.org/10.3389/fmicb.2014.00296
Li, S., Kong, L., & Yu, X. (2015). The expanding roles of endoplasmic reticulum stress in virus replication and pathogenesis. Critical reviews in microbiology, 41(2), 150–164. https://doi.org/10.3109/1040841X.2013.813899
Hong, J., Kim, K., Kim, J. H., & Park, Y. (2017). The Role of Endoplasmic Reticulum Stress in Cardiovascular Disease and Exercise. International journal of vascular medicine, 2017, 2049217. https://doi.org/10.1155/2017/2049217
Zha, X., Yue, Y., Dong, N. & Xiong, S. Endoplasmic Reticulum Stress Aggravates Viral Myocarditis by Raising Inflammation Through the IRE1-Associated NF-κB Pathway. Canadian Journal of Cardiology Available at: https://www.onlinecjc.ca/article/S0828-282X(15)00178-6/fulltext.
Zhang, H., Yue, Y., Sun, T., Wu, X., & Xiong, S. (2017). Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Scientific reports, 7, 42162. https://doi.org/10.1038/srep42162
Luo, T., Kim, J. K., Chen, B., Abdel-Latif, A., Kitakaze, M., & Yan, L. (2015). Attenuation of ER stress prevents post-infarction-induced cardiac rupture and remodeling by modulating both cardiac apoptosis and fibrosis. Chemico-biological interactions, 225, 90–98. https://doi.org/10.1016/j.cbi.2014.10.032
Oster ME, Shay DK, Su JR, et al. Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA. 2022;327(4):331–340. doi:10.1001/jama.2021.24110
Rao, R. V., & Bredesen, D. E. (2004). Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Current opinion in cell biology, 16(6), 653–662. https://doi.org/10.1016/j.ceb.2004.09.012
Prasanth, M. I., Malar, D. S., Tencomnao, T. & Brimson, J. M. The emerging role of the sigma-1 receptor in autophagy: Hand-in-hand targets for the treatment of alzheimer's. Taylor & Francis Available at: https://www.tandfonline.com/doi/full/10.1080/14728222.2021.1939681?scroll=top&needAccess=true.
Jin, J. L., Fang, M., Zhao, Y. X., & Liu, X. Y. (2015). Roles of sigma-1 receptors in Alzheimer's disease. International journal of clinical and experimental medicine, 8(4), 4808–4820.
Song, W. J., Hui, C., Hull, J. H., Birring, S. S., McGarvey, L., Mazzone, S. B., & Chung, K. F. (2021). Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. The Lancet. Respiratory medicine, 9(5), 533–544. https://doi.org/10.1016/S2213-2600(21)00125-9
Wu, P. E., Austin, E. & Leong, D. Fluvoxamine for symptomatic outpatients with covid-19. CMAJ Available at: https://www.cmaj.ca/content/194/7/E258.
Nice! 👍🏼